Chapter 9

Molecular Geometry and Bonding Theories

- How to describe **molecular geometries**
- Molecular shapes the VSEPR model
- Polar vs nonpolar molecules
- Why molecules form bonds and have the shapes they do valencebond theory
- Overlap of atomic orbitals *sigma* bonds and *pi* bonds
- Hibridization of atomic orbitals
- Electronic structure of molecules molecular orbital theory

- Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which.
- The shape of a molecule is determined by its bond angles.
- Consider CCl₄: experimentally we find all CI-C-CI bond angles are 109.5°.
- Therefore, the molecule cannot be planar and all CI atoms are located at the vertices of a tetrahedron with the C at its center.

Prentice Hall © 2003

- In order to predict molecular shape, we assume the valence electrons repel each other. Therefore, the molecule adopts 3D geometry to minimize this repulsion.
- We call this process Valence Shell Electron Pair Repulsion (VSEPR) theory.
- There are simple shapes for AB₂ and AB₃ molecules.

• There are **five fundamental geometries** for molecular shape:

- When **considering the geometry** about the central atom, we **consider all electrons** (lone pairs and bonding pairs).
- When naming the molecular geometry, we focus only on the positions of the atoms.
- Additional molecular shapes can be obtained by removing corner atoms from the basic geometries.

- To determine the shape of a molecule, we do not distinguish between lone pairs (nonbonding) of electrons and bonding pairs.
- **Regions** where these electrons are most likely to be found are called electron domains.
- We define the electron domain geometry by the positions in 3D space of *ALL* electron pairs (bonding or non-bonding).
- The electrons adopt an arrangement in space to minimize e⁻-e⁻ repulsion.

VSEPR Model

VSEPR Model

VSEPR Model

- To determine the **electron-domain** and **molecular geometries**:
 - 1. Draw the Lewis structure.
 - 2. Count the total number of electron domains around the central atom (non-bonding pair, single bond, or multiple bond).
 - 3. Determine electron-domain geometry by arranging the electron domains to minimize e⁻-e⁻ repulsion.
 - 4. Determine the **molecular geometry** by the arrangement of the **bonded atoms**.

Chapter 9

Prentice Hall © 2003

TABLE 9.2 Electron-Domain Geometries and Molecular Shapes for Molecules with Two, Three, and Four Electron Domains Around the Central Atom

VSEPR Model

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	B A B Linear	ö=c=ö
3	Trigonal planar	3	0	B Trigonal planar	;;;. ^B ;;.
		2	1	B Bent	
4	Tetrahedral	4	0	B B B B	
		3	1	B B B Trigonal pyramidal	H H H
		2	2	B A Bent	H H

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

- Determine the electron domain geometry only by looking at electrons.
- Name the **molecular geometry** by the positions of **atoms**.
- Ignore lone pairs in the molecular geometry.
- All the atoms that obey the **octet rule** have **tetrahedral** electron domain geometries.

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

By experiment, the H-X-H bond angle decreases on moving from C to N to O:

- Since electrons in a bond are attracted by two nuclei, they do not repel as much as lone pairs.
- Therefore, the bond angle decreases as the number of lone pairs increase.

Prentice Hall © 2003

VSEPR Model

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

• Similarly, electrons in multiple bonds repel more than electrons in single bonds.

Molecules with Expanded Valence Shells

- Atoms that have expanded octets have AB₅ (trigonal bipyramidal) or AB₆ (octahedral) electron domain geometries.
- For trigonal bipyramidal structures there is a plane containing three electrons pairs. The fourth and fifth electron pairs are located above and below this plane.
- For octahedral structures, there is a plane containing four electron pairs. Similarly, the fifth and sixth electron pairs are located above and below this plane.

VSEPR Model

TABLE 9.3 Electron-Domain Geometries and Molecular Shapes for Molecules with Five and Six Electron Domains Around the Central Atom								
Total Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example			
6	Octahedral	6	0	B B B B B Cotahedral	SF ₆			
		5	1	Square pyramidal	BrF ₅			
		4	2	Square planar	XeF4			

Molecules with Expanded Valence Shells

To minimize e⁻-e⁻ repulsion, lone pairs are always placed in equatorial positions.

Molecules with Expanded Valence Shells

Shapes of Larger Molecules

- In acetic acid, CH₃COOH, there are three central atoms.
- We assign the geometry about **each central atom separately**.

Molecular Shape and Molecular Polarity

- When there is a **difference in electronegativity** between two atoms, then the bond between them is **polar**.
- It is possible for a molecule to **contain polar bonds**, but not be **polar**.
- For example, the **bond dipoles in CO₂ cancel** each other because CO₂ is linear.

Prentice Hall © 2003

Molecular Shape and Molecular Polarity

- In water, the molecule is not linear and the bond dipoles do not cancel each other.
- Therefore, water is a **polar molecule**.

Molecular Shape and Molecular Polarity

• The overall polarity of a molecule depends on its molecular geometry.

Prentice Hall © 2003

Covalent Bonding and Orbital Overlap

- Lewis structures and VSEPR do not explain why a bond forms.
- How do we account for **shape** in terms of **quantum mechanics**?
- What are the orbitals that are **involved in bonding**?
- We use Valence Bond Theory:
 - Bonds form when orbitals on atoms overlap.
 - There are two electrons of opposite spin in the orbital overlap.

Prentice Hall © 2003

Covalent Bonding and Orbital Overlap

- As two nuclei approach each other their atomic orbitals overlap.
- As the amount of overlap increases, the energy of the interaction decreases.
- At some distance the **minimum energy** is reached.
- The minimum energy corresponds to the bonding distance (or bond length).
- As the two atoms get closer, their nuclei begin to repel and the energy increases.

Covalent Bonding and Orbital Overlap

• At the **bonding distance**, the **attractive forces** between nuclei and electrons just **balance** the **repulsive forces** (nucleus-nucleus, electron-electron).

Prentice Hall © 2003

- Atomic orbitals can **mix** or **hybridize** in order to adopt an **appropriate geometry** for bonding.
- Hybridization is determined by the electron domain geometry.

sp Hybrid Orbitals

- Consider the BeF2 molecule (experimentally known to exist):
 - Be has a **1s²2s²** electron configuration.
 - There is **no unpaired electron** available for bonding.
 - We conclude that the **atomic orbitals are not adequate** to describe orbitals in the molecule.
- We know that the F-Be-F bond angle should be 180° (VSEPR theory).
- We also know that one electron from Be is shared with each one of the unpaired electrons from F.

Prentice Hall © 2003

sp Hybrid Orbitals

- We assume that the Be orbitals in the Be-F bond are **180° apart**.
- We could **promote an electron** from the 2s orbital on Be to the 2p orbital to **get two unpaired electrons** for bonding.
- BUT the **geometry** is still **not explained**.
- We can solve the problem by allowing the 2s and one 2p orbital on Be to mix or form a hybrid orbital.
- The hybrid orbital comes from an *s* and a *p* orbital and is called an *sp* hybrid orbital.

Prentice Hall © 2003

sp Hybrid Orbitals

- The lobes of *sp* hybrid orbitals are 180° apart.
- Since only one of the Be 2p orbitals has been used in hybridization, there are two unhybridized p orbitals remaining on Be.

sp² Hybrid Orbitals

- Important: when we mix n atomic orbitals we must get n hybrid orbitals.
- sp² hybrid orbitals are formed with one s and two p orbitals. (Therefore, there is one unhybridized p orbital remaining.)
- The large lobes of *sp*² hybrids lie in a trigonal plane.
- All molecules with trigonal planar electron pair geometries have sp² orbitals on the central atom.

sp³ Hybrid Orbitals

- *sp*³ Hybrid orbitals are formed from one *s* and three *p* orbitals.
- Therefore, there are four large lobes.
- Each lobe points towards a vertex of a tetrahedron.
- The angle between the large lobs is 109.5°.
- All molecules with tetrahedral electron pair geometries are *sp*³ hybridized.

Prentice Hall © 2003

Hybridization Involving d Orbitals

- Since there are only three *p*orbitals, trigonal bipyramidal and octahedral electron domain geometries must involve *d*orbitals.
- Trigonal bipyramidal electron domain geometries require sp³d hybridization.
- Octahedral electron domain geometries require sp³d² hybridization.

Prentice Hall © 2003

Predicting Hybrid Orbitals

- 1. Draw the Lewis structure.
- 2. Determine the **electron domain geometry** with VSEPR.
- 3. Specify the **hybrid orbitals required** for the electron pairs based on the electron domain geometry (Table 9.4).

Consider **acetylene**, C₂H₂

- the electron domain geometry of each C is linear;
- therefore, the C atoms are *sp* hybridized;
- the *sp* hybrid orbitals form the C-C and C-H σ-bonds;
- there are two unhybridized *p*-orbitals;
- both unhybridized *p*-orbitals form the two π -bonds;
- one π -bond is **above and below** the plane of the nuclei;
- one π -bond is **in front and behind** the plane of the nuclei.

Prentice Hall © 2003

Note: When triple bonds form (e.g. C_2H_2 or N_2), one π -bond is always above and below and the other is in front and behind the plane of the nuclei.

Delocalized π **Bonding**

- So far all the bonds we have encountered are localized between two nuclei.
- In the case of benzene
 - 1. there are 6 C-C σ bonds, 6 C-H σ bonds,
 - 2. each C atom is sp^2 hybridized,
 - 3. and there are 6 unhybridized *p* orbitals on each C atom.

Prentice Hall © 2003

Delocalized π **Bonding**

- In benzene there are two options for the 3 π bonds: •
 - 1 localized between C atoms or
 - delocalized over the entire ring (i.e. the π electrons are shared by 2. all 6 C atoms).
- Experimentally, all C-C bonds are the same length in benzene.
- Therefore, all C-C bonds are of the same type (recall single bonds are • longer than double bonds).

(b) 2p atomic orbitals

General Conclusions

- Every two atoms share at least 2 electrons.
- Two electrons between atoms on the same axis as the nuclei are σ bonds.
- σ -Bonds are always localized.
- If two atoms share more than one pair of electrons, the second and third pair form π -bonds.
- When resonance structures are possible, delocalization is also possible.

Prentice Hall © 2003

- Some aspects of bonding are not explained by Lewis structures, VSEPR theory and hybridization (e.g., magnetic behavior and color).
- For these molecules, we use **Molecular Orbital (MO) Theory**.
- Just as electrons in atoms are found in **atomic orbitals**, electrons in molecules are found in **molecular orbitals**.
- Molecular orbitals:
 - 1. contain a maximum of two electrons;
 - 2. have definite energies;
 - 3. can be visualized with **contour diagrams**;
 - 4. are associated with an **entire molecule**.

The Hydrogen Molecule

- When two atomic orbitals overlap, two molecular orbitals form.
- Therefore, **1s (H) + 1s (H)** must result in two MOs for H₂:
 - one has electron density primarily between nuclei (bonding MO);
 - one has little electron density between nuclei (antibonding MO).
- MOs resulting from **s** orbitals are σ MOs.
- σ (bonding) MO is **lower energy** than σ^* (antibonding) MO.

Prentice Hall © 2003

The Hydrogen Molecule

H atomic orbitals

H₂ molecular orbitals

Prentice Hall © 2003

The Hydrogen Molecule

- Energy-level diagrams (*aka* MO diagrams) show orbital energies and electron assignments.
- The electrons from the atoms are placed in the MOs starting at the **lowest** energy (σ_{1s}) (Note: electrons in MOs have opposite spins).

Bond Order

• We define **bond order** as:

Bond order = $\frac{1}{2}$ (bonding electrons - antibonding electrons)

- Bond order = 1 for single bond.
- Bond order = **2 for double bond**.
- Bond order = **3 for triple bond**.
- Fractional bond orders are possible.

Bond Order

• For H2:

Bond order
$$=\frac{1}{2}(2-0)=1$$

Therefore, H2 has a single bond.

• For He_2 :

Bond order
$$=\frac{1}{2}(2-2)=0$$

Therefore, He₂ is not a stable molecule.

Prentice Hall © 2003

- First consider homonuclear diatomic molecules (e.g. Li₂, Be₂, B₂ etc.).
- **AOs combine** according to the following **rules**:
 - 1. The number of MOs = number of AOs;
 - 2. AOs of **similar energy combine** most effectively;
 - 3. As overlap increases, the energy of the MO decreases;
 - 4. Each MO has at most **two electrons**, with **spins paired** (Pauli)
 - 5. For degenerate orbitals, each MO is first occupied singly (Hund)

Molecular Orbitals for Li₂

- **1s orbitals** combine to give one σ_{1s} and one σ_{1s}^* orbital, both of which are occupied (Li = 1s²2s¹).
- 2s orbitals combine to give one σ_{2s} and one σ_{2s}^* orbital.
- The energies of the 1s and 2s orbitals are sufficiently different so that there is no crossmixing of orbitals.

Molecular Orbitals for Li₂

- Since the 1s AOs are completely filled, the σ_{1s} and σ_{1s}^{*} are filled.
- We generally ignore core electrons in MO diagrams.

Molecular Orbitals for Be₂

- There are a total of **8 electrons in Be**₂:
 - 2 electrons in σ_{1s} ;
 - 2 electrons in σ_{1s}^* ;
 - 2 electrons in σ_{2s} ; and
 - 2 electrons in σ_{2s}^* .

Bond order
$$=\frac{1}{2}(4-4)=0$$

• Since the bond order is zero, **Be₂ does not exist**.

Molecular Orbitals from 2p Atomic Orbitals

- There are **two ways** in which two *p* orbitals **overlap**:
- end-on so that the resulting MO has electron density on the axis between nuclei (i.e. σ type orbital);
- 2. sideways so that the resulting MO has electron density above and below, or to the sides, of the axis between nuclei (i.e. π type orbital).

Second-Row Diatomic Molecules Molecular Orbitals from 2p Atomic Orbitals

Energy

- The six *p*-orbitals (two sets of 3) must give rise to 6
 MOs: σ, σ^{*}, π, π^{*}, π, and π^{*}.
- Therefore, there is a maximum of 2π bonds that can come from *p*-orbitals.
- The relative energies of these six orbitals can change.

Configurations for B₂ Through Ne₂

- As with 2*s* and 2*p* atomic orbitals, σ_{2s} orbitals are lower in energy than σ_{2p} orbitals.
- $2p_z$ Orbitals have greater overlap (they point directly towards one another) so the σ_{2p} MO is lower in energy than the π_{2p} orbitals.
- For the same reason, the σ_{2p}^* MO is higher in energy than the π_{2p}^* orbitals.

• The π_{2p} and π^*_{2p} orbitals are doubly degenerate.

Prentice Hall © 2003

Configurations for B₂ Through Ne₂

- As atomic number decreases, it is more likely that a 2s orbital on one atom can interact with the 2p orbital on the other.
- As this 2*s*-2*p* interaction increases, the σ_{2s} MO lowers in energy and the σ_{2p} MO increases in energy.
- For B_2 , C_2 and N_2 the σ_{2p} orbital is higher in energy than the π_{2p} .
- For O₂, F₂ and Ne₂ the σ_{2p} orbital is lower in energy than the π_{2p} .
- Once the relative orbital energies are known, the required number of electrons can be added to the MOs, taking into account Pauli's exclusion principle and Hund's rule.

Configurations for B₂ Through Ne₂

	Large 2 <i>s</i> -2 <i>p</i> interaction				Small 2 <i>s</i> -2 <i>p</i> interaction			
		B ₂	C ₂	N ₂		O ₂	F ₂	Ne ₂
	σ_{2p}^{*}				σ_{2p}^{*}			11
	π^*_{2p}				π_{2p}^*	1 1	11 11	11 11
	σ_{2p}			11	π_{2p}	11 11	11 11	11 11
	π_{2p}	1 1	11 11	11 11	σ_{2p}	11	11	11
	σ^*_{2s}	11	11	11	σ_{2s}^{*}	11	11	11
	σ_{2s}	11	11	11	σ_{2s}	11	11	11
Bond order Bond enthalpy (kJ/n Bond length (Å) Magnetic behavior	nol)	1 290 1.59 Paramagnetic	2 620 1.31 Diamagnetic	3 941 1.10 Diamagnetic		2 495 1.21 Paramagnetic	1 155 1.43 Diamagnetic	0

Prentice Hall © 2003

Electron Configurations and Molecular Properties

- Two types of magnetic behavior:
 - 1. paramagnetism (unpaired electrons in molecule): strong attraction between magnetic field and molecule;
 - 2. diamagnetism (no unpaired electrons in molecule): weak repulsion between magnetic field and molecule.
- Magnetic behavior is detected by determining the mass of a sample in the presence and absence of magnetic field:

Electron Configurations and Molecular Properties

- Experimentally O₂ is paramagnetic.
- The Lewis structure for O₂ shows no unpaired electrons.
- The MO diagram for O₂ shows 2 unpaired electrons in the π^*_{2p} orbital.
- Experimentally, O₂ has a short bond length (1.21 Å) and high bond dissociation energy (495 kJ/mol). This suggests a double bond.
- The MO diagram for O_2 predicts both paramagnetism and the double bond (bond order = 2).